Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis - Water electrolysis energy system

Ramato Ashu Tufa a,*, Jaromír Hnát a, Michal Němecék a, Roman Kodým a, Efrem Curcio b, c, Karel Bouzek a

a Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
b Department of Environmental and Chemical Engineering, University of Calabria (DIATIC-UNICAL), via P. Bucci CUBO 45A, 87036, Rende, CS, Italy
c Institute on Membrane Technology of the National Research Council (ITM-CNR), c/o the University of Calabria, via P. Bucci, cuba 17/C, 87036, Rende, CS, Italy

Article info

Article history:
Received 30 May 2018
Received in revised form 23 August 2018
Accepted 25 August 2018
Available online 27 August 2018

Keywords:
Industrial wastewater
Reverse electrodialysis
Salinity gradient power
Water electrolysis
Hydrogen production

Abstract

This work presents a novel approach combining reverse electrodialysis (RED) and alkaline polymer electrolyte water electrolysis (APWEL) for renewable hydrogen production. APWEL is fuelled by salinity gradient power (SGP) extracted from sulfate (SO₄²⁻)-rich industrial wastewater. The performance of a pilot-scale RED unit (200 cells, active area: 31.5 x 63.5 cm²), using salt solutions mimicking sulfate-rich waste streams (0.01-0.3 M Na₂SO₄), was evaluated. An open circuit voltage (OCV) of 12.3 V, a maximum power density of 0.22 W/m²MP (MP: membrane pair) and internal area resistance of 43.2 U cm²/cell were recorded by using 0.01 M/0.3 M Na₂SO₄ solutions at 35 °C. The APWEL stack (6 cells, active area: 5 x 5 cm²), equipped with Ni foam electrodes and heterogeneous anion-selective membranes, was tested with varying concentrations of liquid electrolyte (0.85-2.5 M KOH) and varying temperatures (28-48 °C). The APWEL stack attained a maximum current density of 110 mA/m² at 1.85 V/cell (i.e. 11 V per stack), 2.5 M KOH and 48 °C. Under these conditions, the integrated system exhibited a maximum hydrogen production rate of 50 cm³/h cm². This study opens up a new perspective on renewable hydrogen production fuelled by non-intermittent SGP from SO₄²⁻-rich industrial effluents.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrogen is a clean and versatile energy carrier for the future. It can be produced from water, natural gas, biomass and various other sources. Over the last decade, hydrogen production using water electrolysis has found acceptability due to the simplicity of this technology and the possibility to produce hydrogen of high purity. Moreover, water electrolysis is a flexible process driven by renewable energy resources, such as solar and wind power. More recently, the use of salinity gradient power (SGP) generated by reverse electrodialysis (RED) as a non-intermittent power source to fuel water electrolyzers has also been explored as an interesting alternative for renewable hydrogen production (Tufa et al., 2016, 2017). In RED, cation-exchange membranes (CEMs) and anion-exchange membranes (AEMs) are alternately aligned to create a low-concentration compartment (LCC) and a high-concentration compartment (HCC) which are fed with solutions of low and high concentrations, respectively. A scheme of RED is shown in Fig. 1. The transport of ions occurs through ion-exchange membranes from HCC to LCC solutions driven by the electrochemical potential difference. Electricity is generated by a redox reaction evolving over electrodes placed at the ends of the membrane pile. RED technology is mostly investigated at lab-scale (Farrell et al., 2017), while studies of large-scale RED systems for SGP generation are relatively rare. A more recent demonstration of a pilot-scale RED system involved the testing of a stack equipped with 125 cell pairs (44 x 44 cm²) and using brine and brackish water from salt works (Tedesco et al., 2016; Tufa et al., 2018).

Alkaline water electrolysis represents a mature process for hydrogen production combining the advantages of robustness and relatively low capital and operating costs. However, it has several limitations, such as inadequately optimized separator, low process efficiency and lack of suitability for intermittent power operations (Chanda et al., 2015). The latest development in alkaline water electrolysis...
(APWEL), which employs a solid polymer electrolyte based on AEMs (Hnat et al., 2011; Xiao et al., 2012). Such a design has the advantage of low gas cross-over, higher flexibility, and suitability for scale-up and operability at high pressure, allowing a simplified system with lower costs. In fact, most APWEL studies focus on single-cell designs rather than multiple-cell designs; the latter allow a better understanding of system performance on a large scale. Therefore, the present study uses scaled-up RED and APWEL systems in contrast to the set-ups used in most of the previous studies.

Industrial waste streams discharged into the ocean have SGP potential of up to 18 GW (Logan and Elimelech, 2012). However, the performance of RED using waste streams from various sources (Dil et al., 2017a; Dil et al., 2017b; Luo et al., 2017; Mehrabi and Alipanahpour Dil, 2017) other than NaCl-based salt solutions is a poorly investigated topic. Recent attempts have focused on the application of hybrid RED/electrodialysis systems for power generation using phenol-containing wastewaters (Luo et al., 2017), and wastewater from a fish canning factory and a sewage treatment plant (Di Salvo et al., 2017). Meanwhile, hydrogen production from waste resources is a rapidly growing field. In particular, biological hydrogen production from industrial wastewaters containing organic matter is regarded as a promising strategy for renewable hydrogen production; however, the drawback of this process is the low yield (Hatzell et al., 2014). On the other hand, given an electrolyzer's energy consumption of 53–70 kWh/kg (Levene et al., 2007), efficient exploitation of SGP produced from waste streams to fuel water electrolyzers would produce an annual yield of up to 3 M tons of hydrogen. Therefore, indirect production of hydrogen from industrial waste streams by water electrolyzers may be a viable alternative to other hydrogen production technologies. Most industrial waste streams are rich in SO4^2− which can be converted into renewable energy and hydrogen. SO4^2−-rich waste streams are usually obtained from salt lake brines, mining processes and industrial waste streams from sewage treatment plants, tanneries and rechargeable battery manufacturing processes. In most cases, industrial wastewaters contain sulfate concentrations from 1 to 40 g/l (0.01–0.4 M) (Siles et al., 2010), which is far above the permitted limit (0.75–1.5 g/l) of discharge to surface water bodies (Act, 2003). A high content of SO4^2− brine with concentrations of up to 1 M can be obtained from membrane treatment of industrial wastewater (Quist-Jensen et al., 2017). Therefore, SO4^2−-rich industrial wastewaters can potentially be exploited for SGP generation and subsequent hydrogen production in the logic of the circular economy, waste-to-energy (WtE) and power-to-gas (P2G) (Götz et al., 2016).

To our knowledge, no attempt has been made to produce SGP from SO4^2−-rich industrial effluents with subsequent use as fuel for hydrogen production by water electrolysis. In the present study, a novel approach is investigated, combining SGP RED and APWEL systems for hydrogen production driven by non-intermittent energy generated from SO4^2−-rich industrial waste streams. The process is conceptually illustrated in Fig. 2. Two key objectives were set. Firstly, a pilot-scale RED unit was optimized for SGP generation using industrial waste streams: the performance of the RED unit was evaluated in terms of voltage and power density at varying flow velocity and temperature of waste streams. Next, a laboratory-scale APWEL system, scaled-up 6-fold compared to most cases studied using single-cell designs (Ju et al., 2018; Tufa et al., 2016), was tested for potential hydrogen production driven by SGP: the hydrogen production rate was evaluated at varying electrolyte concentrations and temperatures to identify optimal operating conditions. The ultimate goal was to demonstrate the possibility of converting the electrochemical potential of industrial waste streams into clean energy and hydrogen by an integrated RED-APWEL energy system.

2. Materials and methods

2.1. Pilot-scale reverse electrodialysis stack

A commercial pilot-scale EDR-III/500/0.8 unit (MEGA a.s., Czech Republic) was adapted to a RED configuration in co-flow mode. A picture of the pilot-scale RED used in the present study is shown in Fig. 1. The stack consisted of 200 cell pairs with alternatively aligned...
ion–exchange membranes, each separated by non-woven, net-like spacers made of polyethylene having a porosity of 0.88 and thickness of 0.8 mm. These spacers have openings in their frameworks, resulting in horizontal feed and drain channels in the membrane stack. The electrodes used were made of platinized titanium (Ti/Pt) and had the same effective area as the membranes. Aqueous solutions of Na₂SO₄ were used as test solutions in all experiments. An electrode rinse solution of 0.5 M Na₂SO₄ (99.0%, Penta s.r.o., Czech Republic) was used to sustain the redox reaction for the continuous flow of electricity through the external load. The use of Na₂SO₄ is environmentally safer in large-scale RED operations (Tufa, 2015; Veerman et al., 2010b).

2.1.1. Membranes
Ralex ion-exchange membranes (MEGA a.s., Czech Republic) with a thickness of 0.57 mm, an effective area 2000 cm² (31.5 cm × 63.5 cm) and total active membrane area of 80 m² were used in the pilot-scale RED unit. These membranes have higher ion-exchange capacity compared to most commercial membranes, along with a reasonable permselectivity i.e. capability to permit counter-ions while excluding co-ions. The electrochemical properties of Ralex membranes are shown in Table 1.

2.1.2. Feed solutions
Aqueous solutions of Na₂SO₄ were used as test solutions in all experiments. The LCC solution had a concentration of 0.01 M Na₂SO₄, the HCC solution a concentration of 0.3 M Na₂SO₄. The concentration of feed solutions was monitored at regular time intervals by conductivity measurement (GREISINGER GMH 3430, Czech Republic). Experiments were performed in batch mode by recirculation of feed solutions at a flow rate in the range of 1–11 m³/h (flowmeter GEORG FISHER + GF+, USA) and temperature in the range of 15–35°C.

2.1.3. Electrochemical measurements
An external precision resistor (Fuel Cell test load, TL4A, Astris Energi Inc., USA), connected in series with the RED system, was used for loading the stack (Tufa et al., 2014). The DC current and voltage levels across the test loads were measured by a Fluke 87-V Digital Multimeter (USA). A response time of about 30 min was maintained between each experimental run for Na₂SO₄ feed solutions to achieve a stable voltage. The overall performance of the RED stack was evaluated in terms of voltage (V), current (I) and gross power density (P₉). Theoretical approaches to an evaluation of the performance of the RED stack are provided in the Supporting Information.

2.2. Alkaline water electrolysis stack
2.2.1. Design and assembly of the membrane electrode
The APWEL unit, in a bipolar configuration, was equipped with 6 cells, each having an active area of 5 × 5 cm². A picture and scheme of the APWEL unit is presented in Fig. 3. The anodes and cathodes were based on porous Ni foam (INCO Advanced Technology Materials Co., Ltd., USA) with a thickness of 1.7 mm and a pore size of 0.58 mm. The end plates of the APWEL stack were made of steel, the insulating plates of PVC (polyvinyl chloride)

![Figure 3. Picture and scheme of the lab-scale electrolyzer with zero-gap membrane electrode assembly.](image)

Table 1
Properties of the ion-exchange membranes used in the present study (Güler et al., 2013).

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Thickness (µm)</th>
<th>Area resistance (Ωcm²)</th>
<th>Permselectivity (%)</th>
<th>Ion-exchange capacity (meq./g)</th>
<th>Charge density (meq./g H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralex AMH-PES</td>
<td>714</td>
<td>7.66</td>
<td>89.3</td>
<td>1.97</td>
<td>3.5</td>
</tr>
<tr>
<td>Ralex CMH-PES</td>
<td>764</td>
<td>11.3</td>
<td>94.7</td>
<td>2.34</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Table 2
Properties of the heterogeneous ASM used in an APWEL unit (Hnát et al., 2012; Tufa et al., 2016).

<table>
<thead>
<tr>
<th>Membrane Properties</th>
<th>Temperature (°C)</th>
<th>Values determined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>20</td>
<td>0.74</td>
</tr>
<tr>
<td>Ion-exchange capacity (mmol/g dry)</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Conductivity (S/m)</td>
<td>50</td>
<td>5.1</td>
</tr>
</tbody>
</table>

(PLEXIPLAST, Czech Republic). Nickel sheets (KÖNIG FRANKSTAHL s.r.o., Czech Republic) were used as current collectors and bipolar plates. Distribution plates, serving both for the housing of the Ni foam electrodes and the distribution of the liquid electrolyte, were made of polyethylene (PE) (TITAN-MULTIPLAST s.r.o., Czech Republic). Expanded polytetrafluoroethylene sealing was used to prevent leakage of the electrolyte from the stack. The flow of the liquid electrolyte was 4.6 cm³/s throughout the stack. The separators of the gases produced were made of polyethylene terephthalate (Zenit, spol. s.r.o., Czech Republic) and filled with polyethylene rollers in order to increase the linearity of the flow and interfacial contact, and thus the separation rate of the gaseous phase.

The heterogeneous membranes produced in-house were composed of an inert matrix of low-density polyethylene (LDPE 605 BA, ExxonMobil TM, LD 605BA, USA) (27.3 wt%) and a water-soluble component of poly (ethylene glycol-ran-propylene glycol) (6.7 wt%) (Sigma-Aldrich, USA) blended with anion-selective resins (Dowex Marathon, USA) with quaternary ammonium functional groups. Details of the preparation, characterization and activation methods of the anion-selective membrane (ASM) are given elsewhere (Hnát et al., 2012). For the present study, the membranes were reinforced with polyethylene terephthalate to improve the mechanical properties. The properties of the ASMs are presented in Table 2.

2.2.2. Electrochemical measurements
The voltage of the APWEL stack was recorded for an input current range of 0.25 A–9.75 A (corresponding to current densities in the range of 0.01–0.39 A/cm²) supplied by a DC power source Statron 3251.1 (Statron Gerätetechnik GmbH, Germany).
current-voltage curve was recorded at KOH (85.0%, Penta s.r.o., Czech Republic) concentration in the range of 0.85–2.5 mol/dm3 and temperature in the range of 28–48 °C. The hydrogen production rate (HPR) under different conditions can be determined from I_e flowing through the APWEL.

The minimum amount of energy required to initiate the water electrolysis reaction is $\Delta G = 237.2$ kJ/mol, corresponding to the reversible voltage of $V_{th} = 1.23$ V. However, under practical conditions the cell voltage (V_{cell}) is given by:

$$V_{cell} = V_R + \eta_{act} + I_eR_{Ohm}$$

where η_{act} is the activation overpotential of electrode reactions, I_e is the cell current and R_{Ohm} the Ohmic resistance associated with electrolyte properties, electrode type and cell design. The thermoneutral voltage (V_{th}) corresponds to the condition where the energy dissipated by electric current is used to overcome ΔG for the splitting of water molecules which is related to the redox processes as well as the change in entropy ΔS. V_{th} is related to the change in enthalpy ΔH as:

$$V_{th} = \frac{\Delta H}{nF}$$

where n is the number of electrons involved in the redox reaction and F is the faraday constant (96,485 C/mol). V_{th} is equal to 1.48 V at 25 °C. Industrial-scale alkaline electrolyzers operate at a cell voltage of 1.8–2.0 V and a current density of 100–300 mA/cm2 (Wang et al., 2014; Zeng and Zhang, 2010a, b). The power dissipated over the electrolyzer (P_e) can be obtained from the cell voltage and cell current:

$$P_e = V_{cell}I_e$$

The energy consumed by the electrolyzer W_e (kWh/Nm3) with 100% Faradaic efficiency is given by:

$$W_e = V_{cell}nF$$

The energy requirements of industrial-scale alkaline electrolyzers usually amount to 4.5–5.0 kWh/Nm3 (Wang et al., 2014; Zeng and Zhang, 2010a, b), the theoretical value is 2.9 kWh/Nm3, thus implying a thermodynamic efficiency of about 58–64% (Wang et al., 2014). The hydrogen production rate (HPR) can be determined from I_e as:

$$HPR = \frac{I_e}{nF}\eta_e$$

where η_e is the conversion efficiency (current efficiency) factor depending on gas losses due to parasitic currents and hydrogen permeation into the anode compartments. η_e can be determined from the theoretical hydrogen production rate HPR_t as:

$$\eta_e = \frac{HPR}{HPR_t}\times100$$

3. Results and discussion

3.1. Power generation in pilot-scale reverse electrodialysis

The dependence of power generated by RED on temperature (15–35 °C) and flow velocity (0.6–6.9 cm/s) was evaluated in order to identify conditions for the highest power output. The RED stack was operated with 0.01 M/0.3 M Na$_2$SO$_4$ feed solutions.

3.2. Effect of flow velocity and temperature

3.2.1. OCV of the stack

An increase in flow velocity improves the hydrodynamic mixing and hence facilitates the mass transfer of ions towards the membrane surface. Moreover, the flow velocity is directly related to the residence time of the solution in the RED stack. If the flow velocity is increased by two-fold, the residence time is reduced by half. Thus, it has a direct impact on the salinity gradient distribution across the channels of the stack.

Fig. 4 presents the polarization curves as a function of flow velocity and temperature. An increase in OCV of up to 9.7% - from 10.9 V to 12 V - was observed on raising the flow velocity from 0.6 to 6.9 cm/s (Fig. 4a). A viable explanation is a change in the local salinity gradient due to the flowing parasitic current. In fact, a much higher impact of flow velocity on OCV was observed in previous studies on small-scale RED designs (Tufa et al., 2015); this was ascribed to the higher salinity gradient and thinner membranes used in such cases which promote concentration changes caused by the parasitic current.

A change in temperature has only a slight effect on OCV (Daniilidis et al., 2014b; Tufa et al., 2015). As shown in Fig. 4b, the OCV increased by 4% (from 11.8 V to 12.3 V) when raising the temperature of the Na$_2$SO$_4$ solutions from 15 to 35 °C. This is in agreement with expectations since, from a thermodynamic point of view, OCV increases with temperature (Eq. S(1) in the Supporting Information). However, this effect is restricted by parasitic current.

3.2.2. Internal stack resistance

Internal stack resistance predominantly corresponds to the Ohmic resistance of the feeds and membranes (Avci et al., 2016; Fontananova et al., 2014, 2017; Veerman et al., 2008; Vermaas et al., 2011). For large stacks with a high number of membranes and cell pairs, Ohmic losses over electrodes and electrode polarization losses can be neglected (Veerman et al., 2008, 2010b).

Fig. 5a presents the dependence of internal area resistance per cell (IAR) on flow velocity and temperature. By increasing the flow velocity from 0.6 m/s to 6.9 m/s, the IAR dropped by about 26% from 94 to 70 Ωcm2/cell. The decrease in IAR at high flow velocity can be ascribed to enhanced mixing of the feed solutions which results in the transport of ions from the HCC to the LCC, thereby limiting the influence of the resistance of the LCC (Dgiłojecki et al., 2010a, 2010b). In addition, boundary layer resistance also decreases significantly [Not the general rule, but for emphasis] at high flow velocities due to a reduction in thickness of the diffusion boundary layer (Vermaas et al., 2011). A previous study of a lab-scale RED stack (25 cells) led to a 0.14 Ωcm2/cell reduction in IAR per 0.1 cm/s increase in fluid velocity (Tufa et al., 2015). Dgiłojecki et al. observed a significant reduction in internal stack resistance of a RED (3 cells) when operated at a flow velocity above 0.3 cm/s (Dgiłojecki et al., 2009).

The IAR decreases monotonically with rising temperature. A significant reduction in IAR of up to 45% from 78.8 to 43.2 Ωcm2/cell was recorded when the temperature of the feed solutions was increased from 15 °C to 35 °C. Raising feed temperature increases ionic conductivity, enhances ionic mobilities and, ultimately, reduces stack resistance. Considering that Ohmic resistances largely predominate, an almost linear trend between IAR and temperature can be assumed, and a reduction of 1.8 Ωcm2/cell/°C is computed within the experimental temperature range.

Fig. 5b presents the variation in I_e with flow velocity and temperature. In fact, I_e depends on both OCV and R_e (Eq. S(4) in the Supporting Information). I_e also depends on operating conditions: it increases with an increase in flow velocity, which is associated with an increase in conductivity of the LCC solution due to
enhanced mixing. Since the OCV is hardly influenced by temperature, the change in I_s can be correlated to the change in R_i, which is assumed to be a linear function of temperature. On average, I_s increases with a rise in temperature at a rate of 0.1 A/°C. The I_s of the present pilot-scale RED stack was comparatively higher than that of our previous investigation of a small-scale RED stack (25 cells) which indicated an average increment rate of about 0.02 A/°C (Tufa et al., 2014, 2015). Although the difference in stack design and operating conditions precludes a direct comparison, the general observation is that I_s increases when the RED stack is scaled up (Tedesco et al., 2015a, b).

3.2.3. Power density

Fig. 6 shows the dependence of power density on feed flow velocity and temperature. The power density progressively increases with flow velocity within the experimental range. $P_{d,max}$ increased by about 66% from 0.08 to 0.13 W/m²MP (Fig. 6a) when the flow velocity was increased from 0.6 to 6.9 cm/s. High flow velocities result in low residence time of feed in the stack, which consequently leads to a higher average salinity gradient between the compartments and, ultimately, to improved driving force (Tedesco et al., 2012, 2015b). This also gives rise to a reduction in energy efficiency of the RED (Veerman et al., 2009, 2010a; 2011; Vermaas et al., 2013). Moreover, it is worth noting that higher flow velocities result in an increase in pressure drop and pumping energy requirements. $P_{d,max}$ doubled from 0.11 W/m²MP to 0.22 W/m²MP when the temperature of the feed solutions was increased from 15 to 35 °C (Tufa et al., 2014, 2015). A linear trend of $P_{d,max}$ as a function of temperature with a slope of 5.7 mW/m²MP/°C was observed. Temperature has a direct impact on the increase in thermodynamic driving force, ionic mobility and feed conductivities and on the decrease in membrane resistance. This leads to an overall reduction in Ohmic losses, thereby enhancing the power density. Danilidis et al. observed an increase of up to 50% in $P_{d,max}$ (from 0.01 to 0.13 W/m²MP) on heating up the feed solution (0.01 M/5 M NaCl) from 25 to 40 °C, corresponding to a rate of change of ~ 27 mW/m²MP/°C (Danilidis et al., 2014b). For RED tests with artificial brine (5 M NaCl) and seawater (0.5 M NaCl), a 44% increase in $P_{d,max}$ was reported on raising the feed temperature from 10 to 50 °C, corresponding to a rate of change of 27 mW/m²MP/°C (Tufa et al., 2015). Moreover, Tedesco et al. reported a $P_{d,max}$ increase in the range of 40–50% (up to 6 W/m²MP) accompanied by a 30–50% reduction in internal stack resistance on increasing the feed (artificial brackish water/brine: 0.1 M/5 M NaCl) temperature from 20 to 40 °C, corresponding to a rate of change of 175 mW/m²MP/°C (Tedesco et al., 2015a, b). A recent study shows a 25% increase in power density for RED when heating up the feed stream (artificial river water/seawater: 0.017 M/0.5 M NaCl) from 20 to 40 °C, corresponding to a rate of
change of 20 mW/m²·MP/°C (Benneker et al., 2018). In general, the increase in P_{max} with the rise in feed temperature assures the advantage of the thermal heat contained in wastewater.

It is worth noting that an increase in both feed temperature and flow velocity boosts the energy consumption; this requires an appropriate techno-economic analysis to establish the optimal operating conditions (Gurreri et al., 2012; Tufa et al., 2015). With regard to temperature, the availability of low-grade waste heat makes it beneficial, irrespective of the cost of the input energy (Forman et al., 2016; Luo et al., 2012; Tufa et al., 2017). This represents a huge advantage in terms of synergetic conversion of the electrochemical potential of waste streams and low-grade waste heat into electricity, and further storage as hydrogen by burning RED with APWEL.

3.3. Hydrogen production by alkaline water electrolysis

The use of non-intermittent RED power to fuel APWEL enables clean and sustainable hydrogen production. The performance of an APWEL system depends on several operating parameters, such as temperature, liquid electrolyte concentration, catalyst and binder loadings (Tufa et al., 2016; Zeng and Zhang, 2010a; b).

3.3.1. Influence of temperature

Temperature influences the Ohmic loss and kinetics of an electrochemical reaction at the three-phase interface (electrode, catalyst and electrolyte) (Kang et al., 2017; Lee et al., 2016). In this regard, an increase in temperature is expected to reduce the stack voltage needed to attain the required current density (Lee et al., 2016; Marini et al., 2012). A rise in temperature improves the performance of a water electrolysis system to a certain extent (Fig. 7a): when the temperature is raised from 28 to 48 °C the stack voltage progressively decreases from 11.2 V to 10.6 V. A current density of 75 mA/cm² was recorded at 28 °C and cell voltage of 1.85 V. When raising the electrolyte temperature to 48 °C, the current density increased to 110 mA/cm². A voltage of 1.85 V was chosen as the value corresponding to the lower limit of industrial operation, thus allowing a system configuration, a higher concentration of circulating electrolyte will increase the conductivity of distribution channels, however at the cost of increased parasitic currents. The stability of the MEA under the aggressive environment of highly concentrated KOH solutions remains a challenge (Hnat et al., 2017).

3.3.2. Influence of electrolyte concentration

Fig. 7b shows the effect of electrolyte concentration on the performance of the APWEL stack. The cell voltage declines moderately with an increase in electrolyte (KOH) concentration. For a current density in the range of 90–390 mA/cm², the cell voltage drops, on average, by 2.5% on increasing the KOH concentration from 0.85 M to 2.5 M at 48 °C. At a cell voltage of 1.85 V and 48 °C, corresponding to V_{stack} of 11.1 V, the current density increases from 86 to 110 mA/cm² when the KOH concentration is shifted from 0.85 M to 2.5 M KOH. The use of concentrated KOH improves the conductivity of the electrolyte, thus facilitating the ionic contact between the catalytic layer and the membrane, and it improves utilization of the 3D structure of the electrode, thereby enhancing the electrolyzer’s performance. A recent study by Hnat et al. on a single-cell alkaline electrolyzer equipped with a novel 1,4-diazabicyclo[2.2.2]octane (DABCO)-functionalized AEM indicated an approximately 20% increase in current density (i.e. from ~25 mA/cm² to 30 mA/cm²) when the concentration of KOH electrolyte was increased from 0.18 M to 2.7 M at 1.8 V and 40 °C (Hnat et al., 2017). A maximum current density of 150 mA/cm² was reported under operating conditions of 2.7 M KOH, 2 V and 40 °C. This was comparable to that of commercial electrolyzers with a current density ranging from 100 to 300 mA/cm² at 5 M KOH (ionic conductivity of 1.5 S/cm at 80 °C) and 1.8–2 V (Varcoe et al., 2014).

On the other hand, at a higher concentration of KOH electrolyte, the increase in viscosity complicates the recirculation of electrolyte, especially at low temperatures. In a bipolar stack configuration, a higher concentration of circulating electrolyte will increase the conductivity of distribution channels, however at the cost of increased parasitic currents. The stability of the MEA under the aggressive environment of highly concentrated KOH solutions remains a challenge (Hnat et al., 2017).

3.3.3. Hydrogen production rate

Fig. 6 shows hydrogen production rate (HPR) data at varying KOH concentrations, temperatures and current efficiencies. Details on current efficiency determination are provided in the Supporting Information. At 1.85 V and 48 °C, the current density of the APWEL stack varies in the range of 88–110 mA/cm² for KOH concentrations in the range of 1.7–2.5 M. The results indicate a moderate increase in HPR with an increase in both temperature and KOH concentration. The HPR, normalized to an electrode area of 25 cm², increased from 40 to 50 cm³/h·cm² (1.6 × 10⁻³ to 2.0 × 10⁻³ mol/h·cm²) when the KOH concentration was changed from 0.85 to 2.5 M at 48 °C. Under optimal conditions, when the maximum HPR reached 50 cm³/h·cm², the electrolyzer energy consumption was about
5 kWh/Nm³ of H₂. A previous study of a single-cell APWEL stack indicated a current density of 57 mA/cm², corresponding to a HPR of 26 cm³/h cm² (1.1 × 10⁻³ mol/h cm²) at a cell voltage of 1.85 V, 1.7 M KOH electrolyte solution and 45 °C (Tufa et al., 2016). This is comparable to the present APWEL stack which attained a HPR of 45 cm³/h cm² (1.8 × 10⁻³ mol/h cm²) under similar conditions.

In order to identify the operating point where the power requirement of the APWEL meets the power output of the RED stack, the polarization curves of the two systems were analyzed concurrently. Fig. 8b presents the polarization curves of the APWEL stack and the pilot-scale RED stack. Under optimal conditions (1.85 V, 2.5 M KOH), the current flow in the APWEL stack is 2.75 A and the voltage stack is 11.1 V. This corresponds to a total power dissipation of 30.3 W. In order to achieve this power dissipation, the number of cells in the SGP-RED stack was increased to 373 cells for operations with Na₂SO₄ (0.01 M/0.3 M at 35 °C). Under these conditions, the polarization curve of the RED stack and APWEL stack intersect at a cell voltage of 1.85 V and a current of 2.75 A, attaining a HPR of 50 cm³/h cm².

The values of the HPR achieved in the present study can be compared with those in other studies focused on RED-assisted electrolyzers of different designs. Kim and Logan combined reverse electrodialysis (5 cells) and microbial electrolysis cells (electrode chamber volume: 30 mL, cathode projected area: 7 cm²) for hydrogen production from organic matter (Kim and Logan, 2011). This system, indicated as MREC and operated with salinity gradient energy produced by mixing river water and seawater, attained a HPR of 0.8 ± 2.5 m³ H₂/m³/d (0.6-1.3 × 10⁻⁵ mol H₂/h cm²) (Kim and Logan, 2011). Nam et al. reported a maximum hydrogen production rate of 1.6 m³ H₂/m³/d (1.3 × 10⁻⁵ mol H₂/h cm²) using MREC (5 cells, electrode chamber volume: 30 mL and cathode projected area: 7 cm²) driven by SGP produced from thermolytic solutions of ammonium bicarbonate (Nam et al., 2012). Hatzell et al. attained a hydrogen production rate of 8.7 ± 0.1 m³ H₂/m³/d (6.3 × 10⁻⁶ mol H₂/h cm²) on the cathode compartment of the RED unit (volume of the electrolyte rinse solutions: 80 mL and cathode projected area: 207 cm²) using a synthetic waste acid stream as the catholyte (pH 2) (Hatzell et al., 2014). Notably, the hybrid system proposed in the present study, exhibiting a HPR of up to 2.0 × 10⁻³ mol/h cm², significantly outperforms the aforementioned studies on standalone and/or integrated application of RED for hydrogen production.

Although technically possible, single-step hydrogen production directly on RED electrodes is very demanding from the point of view of design and operation: the electrolyzer would require a sufficient number of RED cells in order to provide the necessary voltage at the terminal electrodes, each stack corresponding to just a single alkaline water electrolysis cell. Each such cell needs to be equipped with the necessary hydraulic and gas separation infrastructure. As a result, the complexity of the entire system would
increase enormously. On the other hand, integrating RED with a separate APWEL unit offers the advantage of flexibility, with the possibility to use the excess power produced by RED exclusively for grid power supply or simultaneously with hydrogen production.

4. Economic aspects

The cost of the hybrid RED-APWEL system proposed in the present study operating on industrial sulfate waste streams calls for a breakdown of the individual units. The cost of electricity from industrial waste streams is directly related to that of installing a RED plant. The cost of a RED plant is mainly dependent on the membranes. In fact, given a current membrane price of about 50 €/m², RED is a more expensive technology than other renewable energy sources like wind and solar (Danilidis et al., 2014a). However, with process intensification the use of novel, low-cost membranes would make a huge contribution to the reduction of the cost of RED in the near future. A feasibility study shows that the cost of electricity could drop to 0.18 €/kWh, given that cheap raw materials and manufacturing technologies could reduce the membrane price to 4.3 €/m² (Danilidis et al., 2014a). Moreover, further optimization of RED would result in leveled costs of electricity of about 0.11–0.20 €/kWh by 2020. The critical issue concerning the use of SO₄²⁻-rich waste streams in RED is system performance, which requires further optimization.

The cost perspective for alkaline water electrolysis is quite different from that of RED. A typical electrolyzer set up consists of an electrolysis stack and storage units based on a conventional cylinder tank or tailored ones with a specific material that adsorbs and desorbs hydrogen. All of these factors contribute to the total installation cost which depends mainly on plant size and site-specific characteristics. For a capacity in the range of 1000–1200 €/kW, Bertuccioli et al. estimated 1100 €/kW as the main investment cost with a projected large potential decrease to 580 €/kW by 2030 (Luca Bertuccioli et al., 2014). A system cost breakdown for alkaline water electrolysis reveals that the stack accounts for up to 50% of the overall cost. Membranes contribute only about 7% of the overall stack cost and about 3.5% of the entire system (Kuckshinrichs et al., 2017). Therefore, the impact of introducing a new membrane is not a major issue in terms of the overall cost of alkaline water electrolysis systems unlike the case of RED.

5. Conclusions and outlook

The use of SO₄²⁻-rich industrial waste streams for power generation represents a promising alternative for the valorization of industrial waste streams. An APWEL stack, continuously fuelled by SGP-RED operating on industrial waste streams, ensures an environmentally benign hydrogen production route. A maximum HPR of 50 cm³/h cm² was attained under the best conditions (1.85 V/ cell, 2.5 M KOH, 48 °C). However, further optimization in terms of materials and process is required to meet commercial requirements. The use of highly active, stable electrodes and electrocatalysts both for the anodic and cathodic reactions along with the development of a highly conductive and stable ASM are among the core research targets to improve the efficiency of APWEL. Moreover, an improved design of the APWEL stacks would also facilitate efficient pressurization; this would bring about a huge cost reduction and plant simplification, without the need for subsequent hydrogen compression. For RED, further optimization of ion-exchange membranes for fast transport of SO₄²⁻ ions is crucial to enhance the output power of RED. The apparent permselectivity of membranes in Na₂SO₄ is low due to lower ionic flux (5.58 × 10⁻⁶ mol/cm² s) and low bulk transport number (0.449) of SO₄²⁻ ions across AEMs (Güler et al., 2014). Future research should also focus on optimal stack design, reduction of hydraulic friction losses, assessment of pre-treatment requirements and exploration of various other wastewater resources for power generation (Act, 2003; Bobicki et al., 2012; Di Salvo et al., 2017; Dil et al., 2016, 2018; Siles et al., 2010). Moreover, a more advanced techno-economic assessment of the RED-APWEL system using industrial waste streams with different operating conditions, system design and efficiency and supported by experimental outputs, is the subject of future studies.

Acknowledgments

The financial support of the Education, Audiovisual and Culture Executive Agency (EACEA) under the Program “Erasmus Mundus Doctorate in Membrane Engineering”-EUDIME (FPA 2011-0014) is kindly acknowledged. Ramato A. Tufa acknowledges the financial support of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions IF Grant agreement No. 748683. Additionally, the financial support of this research received from the Grant Agency of the Czech Republic under project No. 16-20728S is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jclepro.2018.08.269.

References
